3((x^2+2x)-2)+1=3(x^2+2x)-5(3-(x^2+2x))

Simple and best practice solution for 3((x^2+2x)-2)+1=3(x^2+2x)-5(3-(x^2+2x)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3((x^2+2x)-2)+1=3(x^2+2x)-5(3-(x^2+2x)) equation:


Simplifying
3((x2 + 2x) + -2) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Reorder the terms:
3((2x + x2) + -2) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Remove parenthesis around (2x + x2)
3(2x + x2 + -2) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Reorder the terms:
3(-2 + 2x + x2) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))
(-2 * 3 + 2x * 3 + x2 * 3) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))
(-6 + 6x + 3x2) + 1 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Reorder the terms:
-6 + 1 + 6x + 3x2 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Combine like terms: -6 + 1 = -5
-5 + 6x + 3x2 = 3(x2 + 2x) + -5(3 + -1(x2 + 2x))

Reorder the terms:
-5 + 6x + 3x2 = 3(2x + x2) + -5(3 + -1(x2 + 2x))
-5 + 6x + 3x2 = (2x * 3 + x2 * 3) + -5(3 + -1(x2 + 2x))
-5 + 6x + 3x2 = (6x + 3x2) + -5(3 + -1(x2 + 2x))

Reorder the terms:
-5 + 6x + 3x2 = 6x + 3x2 + -5(3 + -1(2x + x2))
-5 + 6x + 3x2 = 6x + 3x2 + -5(3 + (2x * -1 + x2 * -1))
-5 + 6x + 3x2 = 6x + 3x2 + -5(3 + (-2x + -1x2))
-5 + 6x + 3x2 = 6x + 3x2 + (3 * -5 + -2x * -5 + -1x2 * -5)
-5 + 6x + 3x2 = 6x + 3x2 + (-15 + 10x + 5x2)

Reorder the terms:
-5 + 6x + 3x2 = -15 + 6x + 10x + 3x2 + 5x2

Combine like terms: 6x + 10x = 16x
-5 + 6x + 3x2 = -15 + 16x + 3x2 + 5x2

Combine like terms: 3x2 + 5x2 = 8x2
-5 + 6x + 3x2 = -15 + 16x + 8x2

Solving
-5 + 6x + 3x2 = -15 + 16x + 8x2

Solving for variable 'x'.

Reorder the terms:
-5 + 15 + 6x + -16x + 3x2 + -8x2 = -15 + 16x + 8x2 + 15 + -16x + -8x2

Combine like terms: -5 + 15 = 10
10 + 6x + -16x + 3x2 + -8x2 = -15 + 16x + 8x2 + 15 + -16x + -8x2

Combine like terms: 6x + -16x = -10x
10 + -10x + 3x2 + -8x2 = -15 + 16x + 8x2 + 15 + -16x + -8x2

Combine like terms: 3x2 + -8x2 = -5x2
10 + -10x + -5x2 = -15 + 16x + 8x2 + 15 + -16x + -8x2

Reorder the terms:
10 + -10x + -5x2 = -15 + 15 + 16x + -16x + 8x2 + -8x2

Combine like terms: -15 + 15 = 0
10 + -10x + -5x2 = 0 + 16x + -16x + 8x2 + -8x2
10 + -10x + -5x2 = 16x + -16x + 8x2 + -8x2

Combine like terms: 16x + -16x = 0
10 + -10x + -5x2 = 0 + 8x2 + -8x2
10 + -10x + -5x2 = 8x2 + -8x2

Combine like terms: 8x2 + -8x2 = 0
10 + -10x + -5x2 = 0

Factor out the Greatest Common Factor (GCF), '5'.
5(2 + -2x + -1x2) = 0

Ignore the factor 5.

Subproblem 1

Set the factor '(2 + -2x + -1x2)' equal to zero and attempt to solve: Simplifying 2 + -2x + -1x2 = 0 Solving 2 + -2x + -1x2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. -2 + 2x + x2 = 0 Move the constant term to the right: Add '2' to each side of the equation. -2 + 2x + 2 + x2 = 0 + 2 Reorder the terms: -2 + 2 + 2x + x2 = 0 + 2 Combine like terms: -2 + 2 = 0 0 + 2x + x2 = 0 + 2 2x + x2 = 0 + 2 Combine like terms: 0 + 2 = 2 2x + x2 = 2 The x term is 2x. Take half its coefficient (1). Square it (1) and add it to both sides. Add '1' to each side of the equation. 2x + 1 + x2 = 2 + 1 Reorder the terms: 1 + 2x + x2 = 2 + 1 Combine like terms: 2 + 1 = 3 1 + 2x + x2 = 3 Factor a perfect square on the left side: (x + 1)(x + 1) = 3 Calculate the square root of the right side: 1.732050808 Break this problem into two subproblems by setting (x + 1) equal to 1.732050808 and -1.732050808.

Subproblem 1

x + 1 = 1.732050808 Simplifying x + 1 = 1.732050808 Reorder the terms: 1 + x = 1.732050808 Solving 1 + x = 1.732050808 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = 1.732050808 + -1 Combine like terms: 1 + -1 = 0 0 + x = 1.732050808 + -1 x = 1.732050808 + -1 Combine like terms: 1.732050808 + -1 = 0.732050808 x = 0.732050808 Simplifying x = 0.732050808

Subproblem 2

x + 1 = -1.732050808 Simplifying x + 1 = -1.732050808 Reorder the terms: 1 + x = -1.732050808 Solving 1 + x = -1.732050808 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + x = -1.732050808 + -1 Combine like terms: 1 + -1 = 0 0 + x = -1.732050808 + -1 x = -1.732050808 + -1 Combine like terms: -1.732050808 + -1 = -2.732050808 x = -2.732050808 Simplifying x = -2.732050808

Solution

The solution to the problem is based on the solutions from the subproblems. x = {0.732050808, -2.732050808}

Solution

x = {0.732050808, -2.732050808}

See similar equations:

| 8x+1=5x+31 | | x*y*X^2*y^2*x^3*y^3= | | 7x+12=8-9x | | -(7y+4)-(-6y-6)=2 | | x=39+2x | | w^2+5w=50 | | 55-2x=7x+17 | | 9g-9= | | 6x^2-23x-4=0 | | 68-2x=2x+12 | | 0.4z+4.3=4.7z | | 9(2x-7)=3(6x+2) | | 9p+2=10+8p | | 63-77x=20x+24 | | 14-9x=78-23x | | -5x-1=-5x-6 | | 2k+3=3k+1 | | 5x+8=127-10x | | -(6y+1)-(-5y-2)=1 | | -2x+10=10-2x | | 89-2x=16x+23 | | 8+14y-2=9y+18-7y | | 8+16t-6=7t+50-3t | | 33+11=44 | | Q+25=6 | | 4z+5z=45 | | -9(4b+4)+(37b-3)=0 | | 3x+17=11x-63 | | 82-2x=4x+16 | | -9.9x=3.96 | | 4x+13=-64-7x | | 8(q+5)-7(6q+3)= |

Equations solver categories